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Collective diffusivity in a suspension of rigid particles in steady linear viscous flows
is evaluated by investigating the dynamics of the time correlation of long-wavelength
density fluctuations. In the absence of hydrodynamic interactions between suspended
particles in a dilute suspension of identical hard spheres, closed-form asymptotic
expressions for the collective diffusivity are derived in the limits of low and high
Péclet numbers, where the Péclet number Pe =ya®/D, with y being the shear rate
and Dy =kpT/6mna is the Stokes—FEinstein diffusion coefficient of an isolated sphere
of radius a in a fluid of viscosity 5. The effect of hydrodynamic interactions is studied
in the analytically tractable case of weakly sheared (Pe < 1) suspensions.

For strongly sheared suspensions, i.e. at high Pe, in the absence of hydrodynamics
the collective diffusivity D° =6 D, where D’ is the long-time self-diffusivity and both
scale as ¢y a’, where ¢ is the particle volume fraction. For weakly sheared suspensions
it is shown that the leading dependence of collective diffusivity on the imposed flow is
proportional to Dy ¢ Pe E, where E is the rate-of-strain tensor scaled by y, regardless
of whether particles interact hydrodynamically. When hydrodynamic interactions
are considered, however, correlations of hydrodynamic velocity fluctuations yield
a weakly singular logarithmic dependence of the cross-gradient-diffusivity on k at
leading order as ak — 0 with k£ being the wavenumber of the density fluctuation.
The diagonal components of the collective diffusivity tensor, both with and without
hydrodynamic interactions, are of O(¢Pe?), quadratic in the imposed flow, and finite
at k=0.

At moderate particle volume fractions, 0.10 < ¢ < 0.35, Brownian Dynamics (BD)
numerical simulations in which there are no hydrodynamic interactions are performed
and the transverse collective diffusivity in simple shear flow is determined via time
evolution of the dynamic structure factor. The BD simulation results compare well
with the derived asymptotic estimates. A comparison of the high-Pe BD simulation
results with available experimental data on collective diffusivity in non-Brownian
sheared suspensions shows a good qualitative agreement, though hydrodynamic
interactions prove to be important at moderate concentrations.

1. Introduction

Over a century after Einstein (1905) published his seminal paper on Brownian
diffusion, the theory of particle diffusion in colloidal dispersions is still under
development. Despite the tremendous progress in understanding of diffusion inspired
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by the Einstein work over the last 100 years, the theory of diffusion in non-equilibrium
flowing suspension has developed only in the last 30 years. The major obstacle
appears to be the non-trivial coupling between Brownian and hydrodynamic forces
due to shearing motion. The influence of these factors is not simply additive, and
shear-induced enhancement of particle diffusivity or, more generally, dispersion is
anticipated as in the analogous problem of passive scalar transport (Taylor 1953;
Novikov 1958; Elrick 1962; Batchelor 1979).

As is the case at equilibrium, in suspensions undergoing steady shear two distinct
diffusive processes can be identified: the particle self-diffusivity, related to the rate
of change of the variance in the position of a tagged particle, and the collective
diffusivity (or gradient diffusivity) corresponding to a rate at which macroscopic
spatial inhomogeneities in particle distribution relax. Also, as in a macroscopically
quiescent suspension, the particles are expected to behave diffusively on two separate
time scales characterized by short- and long-time diffusion coefficients (see Pusey
1991). The latter results from the hindering effect of the direct interactions (e.g.
hydrodynamic or steric) between suspended particles as they move through the
suspension. In sheared suspensions the spatial anisotropy of the imposed flow results
in diffusion coefficients that are anisotropic and the variance in position of a particle
may grow faster than linearly in time owing to the Taylor dispersion driven by the
position-dependent imposed flow.

The early studies of diffusion in sheared systems (e.g. san Miguel & Sancho 1979)
used a transformation to a coordinate system co-moving with the shearing motion
to remove the linear flow from the governing equations. In Frankel & Brenner
(1991), a generalized Taylor dispersion theory was developed to study transport of an
isolated particle in linear flows. An appropriate transformation of the time coordinate
was applied to remove the position-dependent advection of the bulk flow, but the
complexity of the analysis may not allow it to be applied to study of the transport of
interacting particles or collective diffusion.

At the extreme of strong shearing, there have been a number of studies of shear-
induced or hydrodynamic diffusion (Eckstein, Bailey & Shapiro 1977; Leighton &
Acrivos 1987; Breedveld et al. 1998). Trajectory analysis was applied in Acrivos
et al. (1992) to calculate the self-diffusivity, scaling as ¢ya® in the flow direction,
with y being the shear rate and a the sphere radius. The O(¢?) self- and collective-
diffusion coefficients in the velocity-gradient direction were determined by Wang,
Mauri & Acrivos (1996 and 1998, respectively) from trajectory analysis including
three-particle interactions in a monolayer of spheres.t In da Cunha & Hinch (1996),
the diffusion coefficients were derived from the pair-trajectory calculations of spheres
with slight surface roughness. A similar analysis was applied in Wang & Mauri (1999)
to calculate a collective-diffusion coefficient from analysis of pairwise interactions at
O(¢). Nevertheless, applicability of trajectory analysis will probably remain limited
to studies of diffusion in the absence of Brownian transport, because it is not clear
how to introduce stochastic forces into the formulation.

An alternative approach was recently proposed by Mauri (2003) where homogeni-
zation techniques were applied to derive a constitutive relation for the coarse-grained

1 The hydrodynamic encounter between two perfectly smooth spheres in Stokes flow does not
lead to a net lateral displacement of either sphere due to the linearity and time-reversibility of
the equations of motion. Thus, at the pair level a non-hydrodynamic microscopic mechanism (e.g.
particle roughness, repulsive forces, Brownian forces, etc.) must be included to provide microscopic
irreversibility that would lead to net displacement and diffusion upon many successive encounters.
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averaged volumetric flux of non-Brownian particles in an inhomogeneous and non-
stationary viscous flow. Though the general constitutive relation for the collective
diffusivity in terms of the velocity cross-correlation was derived, no comparison with
existing experimental results or theoretical predictions have been performed. As in the
trajectory technique discussed above, generalization of the method of Mauri (2003) to
allow consideration of combined hydrodynamic and Brownian transport is missing.

Morris & Brady (1996) presented a methodology stemming from the experimental
technique of dynamic light scattering (Berne & Pecora 1976) to calculate particle
self-diffusivity in sheared suspensions, and applied it to the case of weak shearing
(small Peéclet number, Pe). Although successful theories referring to dynamic light
scattering had been proposed to study diffusion in quiescent colloidal dispersions
of hydrodynamically interacting particles (Russel & Glendinning 1981; Rallison &
Hinch 1986; Brady 1994), the generalization of the method by Morris & Brady
allowed investigation of particle transport in non-equilibrium sheared suspensions.
The central idea of the equilibrium theories is based upon the relation between
diffusivity (self- and collective) and the rate of temporal decay of the autocorrelation
in number density fluctuations (decorrelation in scattered light is due to uncorrelated
particle motions). This idea has been shown to have the same role in the theory of self-
diffusivity in sheared suspensions (Morris & Brady 1996). Under shear the variance
in particle position is not readily related to diffusion as in a quiescent suspensions
owing to the Taylor dispersion driven by the position-dependent imposed flow, while
the Fourier-transform method was shown to be useful in identifying particle self-
diffusivity by analogy with the treatment of passive scalar transport (see Batchelor
1979). The short-time self-diffusivity (the product of the average mobility of a particle
and kzT) and the long-time self-diffusivity (due to the correlation of the flux of
the tagged particles with the microstructural perturbation caused by their motion)
were determined at O (¢); note that the microstructure associated with the short-time
self-diffusivity is that of the steadily sheared suspension at the shear rate of interest.
In a later paper, Brady & Morris (1997) demonstrated that the same methodology
is applicable to study the effect of strong shear on self-diffusivity and to predict
the O(¢) coefficient of the ya’ self-diffusivity in a general linear flow. The obvious
advantage of the Fourier-transform method is that it places the analysis of quiescent
and flowing suspensions on the same footing. It was suggested in Morris & Brady
(1996) that the approach can be applied to calculation of the collective diffusivity in
sheared colloidal suspensions, as done for the quiescent suspension by Rallison &
Hinch (1986), but no such study has been attempted prior to the present work.

Although self-diffusion coefficients can be calculated using appropriate kinematic
descriptions, such as the mean-square displacement or velocity autocorrelation
function of a particle, and these apply even in highly non-equilibrium systems
(Marchioro & Acrivos 2001; Drazer et al. 2002; Sierou & Brady 2004), evaluation
of the gradient diffusivity is less obvious. For macroscopically quiescent suspensions
there is a clear physical description of the short-time collective diffusivity through the
wave-vector-dependent diffusion coefficient D(k), which depends on both structural
and hydrodynamic effects (Russel & Glendinning 1981 ; Pusey 1991; Segré, Behrend &
Pusey 1995),

Zk) = @ (L.1)
Dy S(k)

where k is the magnitude of the wave-vector of the density fluctuation, # (k) represents
purely hydrodynamic effects, and structural effects are contained in the static structure
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factor S(k). When ak < 1, we are in the long-wavelength limit where the scale of
the density variation is large relative to the particle size. The relaxation of long-
wavelength density fluctuations yields a particle flux which is the same as if a small
constant density gradient persisted everywhere (Rallison & Hinch 1986). Therefore,
as ka — 0, one expects that Z(k) will asymptote to the constant collective or down-
gradient diffusivity, D¢. Also in the limit of vanishing k, the magnitude of the density
fluctuations of a system, as characterized by the static structure factor S(0), is related to
its osmotic or isothermal compressibility S(0) =kpT (dn/d11); (Berne & Pecora 1976;
Pusey 1991). Therefore, S(0)~! can be interpreted as a thermodynamic force associated
with the density gradient which drives the diffusion. The hydrodynamic factor, #(k),
can be expressed through an integral over the velocity cross-correlation (Pusey 1991;
Segré et al. 1995). For a dilute colloidal suspension of hard spheres, S(0)~1— 8 ¢
due to excluded volume effects, while the collective mobility is given by the mean
sedimentation velocity, relative to zero volume-flux axes #(0) ~ (6mna)~'(1 — 6.55 ¢),
leading to the classical result D¢ =kgT H#(0)/S(0) ~ Do(1 + 1.45¢) (Batchelor 1976);
more accurate hydrodynamic data yield a slightly different value of 1.47¢ for the last
term in parentheses (Rallison & Hinch 1986).

In Marchioro & Acrivos (2001), a novel numerical scheme for calculating the
gradient diffusivity in non-Brownian suspensions, which should also be applicable
to the case with Brownian motion, using Stokesian Dynamics simulations has
been proposed. The essence of the method is that the suspension microstructure
relaxes at a rate proportional to the gradient-diffusion coefficient. Thus, if an initial
microstructure is sufficiently different from that of a suspension achieved after
extended steady shearing, probing the rate of relaxation from the initial toward
the steady microstructure provides a means of determining the gradient diffusivity.

A different approach was recently proposed in Leshansky & Brady (2005), where
it was demonstrated that representation (1.1) holds for the tensorial wave-vector-
dependent coefficient & of suspensions in arbitrary steady linear flow. Again the
method was applied to describe the relaxation of the long-wavelength density
fluctuations, ak — 0. The work showed that the tensorial hydrodynamic factor s#
can be expressed through the averaged integral of the velocity cross-correlation
function and S§(0) can be interpreted as that corresponding to the non-equilibrium
shear-induced suspension microstructure. This approach is conceptually different from
that of Marchioro & Acrivos (2001) as it concerns the decay of the fluctuations in
number density rather than relaxation of the macroscopic density itself. For the self-
diffusivity this approach yields a correct description of the self-diffusivity in terms of
the integral over the velocity autocorrelation derived earlier from purely kinematic
arguments by Marchioro & Acrivos (2001) and Sierou & Brady (2004). The results
for the shear-induced collective-diffusion coefficients (in the absence of Brownian
transport) in the velocity-gradient and vorticity directions obtained in Leshansky &
Brady from accelerated Stokesian Dynamics simulations (Sierou & Brady 2001)
show very good agreement with available experimental data. The derivation is
independent of the details of the microscale dynamics and thus should hold quite
generally.

The present paper is a natural continuation of the work in Morris & Brady (1996),
Brady & Morris (1997), and Leshansky & Brady (2005). We address the problem of
calculating the collective diffusivity in a suspension of hard spheres in an arbitrary
steady linear flow at small Reynolds number. The light-scattering-based method of
Morris & Brady is applied to investigation of the rate of decay of the density
fluctuations.
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The paper is organized as follows. In §2 we show how the collective diffusivity can
be identified via the dynamic structure factor approach and derive the closed-form
asymptotic expression for the tensorial diffusion coefficient in the dilute limit for
weakly and strongly sheared suspensions. In §3 we briefly describe the details of the
Brownian Dynamics simulations and present results for the transverse diffusivities
along both principal directions of a simple shear flow (velocity gradient and vorticity).
In §4 a brief summary and concluding remarks are provided. The Appendix concerns
the long-wavelength microstructural deformation of a suspension in simple shear flow
in terms of the non-equilibrium static structure factor S(k =0).

2. Theoretical development
2.1. Dynamic structure factor approach

To understand how we can define the particle diffusivity in linear flow, consider the
following conservation equation for the local particle number density, n(x, 7):

0 .

8—’:+r-x-vn+u-vn=—v-j, (2.1)

where I' is the constant velocity-gradient tensor, U is the bulk average velocity
measured at an arbitrary field point, xo, from which the bulk shear velocity is
referenced and j is the diffusive flux of particles. Neglecting memory effects for time
scales over which the diffusion is stationary (either short or long time scale), the flux
should be expressible as a generalized Fick’s law:

Jj= —/@(x —x')+Vn(x', 1) dx’, (2.2)

where the non-local kernel is identified as the effective diffusivity with dimensions
(L T)~'. With the definition of the Fourier transform (%) pair

h(k) = / h(x)e **dx,  h(x)= (1) / h(k)e* = dk,
where k is the wave-vector in Fourier space, and using the identity
[ 6 =n-Winrdy = m* [ Wik Gii e ak,
the expression for flux (2.2) can be rewritten as
j=—02n) / (k) -ik Ak, 1) e* * dk’. (2.3)

Applying the Fourier transform to (2.3) and using the identity Z {e™ * %1 —
(2m)38(k" — k), we arrive at the Fourier-space expression for j:

j=—9k)-iknk,1), (2.4)

where the k-dependent diffusivity @(k) has the dimensions L?/T. The Fourier
transform applied to the left-hand side of (2.1) combined with (2.4) converts (2.1) to
on . ~ . ~ -~ ~
a—r;—k-l"-an—lk-Un=—k-@(k)-kn. (2.5)
This equation is analogous to that which describes the evolution of a passive scalar
field in a linear flow, in which case there would be a constant isotropic diffusivity
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% = DI. Note that the spreading or dispersion of the passive scalar due to the shear
flow, characterized by the second moment [xx n(x,7)dx, may grow faster than
linearly in time. This is the well-known Taylor dispersion (Taylor 1953; Novikov
1958) and is accounted for by the k- I" - V7 term on the left-hand side of (2.5). The
general solution of (2.5) for an arbitrary linear flow can be found for a constant
k-independent tensorial coefficient & (Batchelor 1979).

In a steadily sheared suspension the average density fluctuation is zero and
therefore we consider the two-point time autocorrelation of the local particle
density, F(k,t)=(n(k,t) n*(k,0)), where * indicates a complex conjugate and
angle brackets denote an appropriate statistical averaging (either ensemble or time
averaging). Multiplying both sides of (2.5) by n*(k, 0) the evolution equation for F
becomes

%—f—k-f-ka—ik-U F4+nk-T-Vin*)=—k-2(k)-k F, (2.6)
where we have removed the hat over & for simplicity. The above equations for 7 and
F have the expected form for a diffusive process in a linear flow, and can be used
to identify the proper expressions for the particle diffusivities either from statistical
mechanical theory or from dynamic simulations of multiparticle systems. Note that
the last term on the left-hand side of (2.6) may lead to a modification of the particle
dispersion in comparison with the dispersion of a passive scalar as described by (2.5),
where this term is missing. In Morris & Brady (1996), the working hypothesis was
that the relaxation of the scalar field F is governed by (2.5) simply by analogy and,
therefore, this term was omitted. (Retaining the last term on the left-hand side of
(2.6) does not alter the outcome of the analogous analysis for the self-diffusivity in
Morris & Brady (1996) as the diffusive variation of F is O(k?), while linear flow
causes variation which is independent of k.)

As in macroscopically quiescent suspensions (e.g. Russel & Glendinning 1981) the
limiting value of & as k — 0 is identified as the collective-diffusion coefficient D°.

To make analytical progress, the particle number density at any point in the
suspension x is defined in terms of distributions as

n(x, 1) =Y 8(x —x4(t)). (2.7)

a=1

where § is the Dirac delta function, and x,(¢) is the position of particle o at time ¢.
The spatial Fourier transform of n(x) is

Ak, t) = /ei’” D 8(x —xo(r))de =) e, (2.8)
a=1 a=1

The density autocorrelation function, known as the dynamic structure factor or as
the intermediate scattering function (primarily in colloidal and polymer literature), is
given by

1 1 /L.
Fllk1) = ~ (k. 1) 7" (k, 0)) = - <Zel"""“")"‘“°”> , (29)
op

where the angular brackets ( ) denote an ensemble average over the joint probability
Py(x¥ (1), 1;xV(0), 0) of particles being at x"(0) at time 0 and at x"(¢) at time ¢. The
constant background density level of n in (2.9) is irrelevant and thus F describes the
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autocorrelation of density fluctuations (Berne & Pecora 1976). Integrating over the
joint probability density (2.9) yields, for statistically indistinguishable particles,

F(k,t) = NN,/Z kw2 O) (N (2), XM (0)) dx ™ dx Y (0)

— /(eik'(xl(t)xl(o)) +(N — l)eik‘(xz(t)*xl(O))
N
x Py dx™(t)dx"(0)

= F,(k,1) ek @210 p o qxN (1) dx N (0), (2.10)

where we have introduced the self-dynamic structure factor (or self-intermediate
scattering function) F(k, 1).
Following Rallison & Hinch (1986), we further define

Pyv(xN, t:k) = /PN(xN|xN(O))P,?,(xN(0))e_ik"”(0) dx™(0), (2.11)

where the transitional probability Py(x"|x"(0)) is governed by a Smoluchowski
equation (Morris & Brady 1996)

LI S A ) (2.12)

with initial value §(x" —x"(0)) at r =0. In (2.12), j, is the probability flux associated
with particle «, given by
N
Jo=UusPy—> DugPy-Vy(lnPy+V), (2.13)
p=1
where D,s =kpTM,s with M,z the hydrodynamic mobility of particle « due to a
force on particle B, V(r") is the interparticle potential (independent of absolute
position) and U, is the hydrodynamic velocity that particle « would have due to
external forces and bulk imposed flow, in the absence of Brownian motion and an
interparticle potential.
Integrating in (2.10) over the initial coordinates x"(0) using (2.11) yields the
expressions for F and Fjy, respectively,

1 . ~ 1 ~ .
F=p [0+ =D Pye “idriar®,  F = N’/PNe”""l dx,dr¥, (2.14)

where the new coordinates
N __
x; and r" =(ry, ..., ry),

have been introduced where x; =x) and r, =x), —x/, « =2, with the original variables
denoted by primes. The formulation for the collective diffusivity can be expressed in
terms of the configuration-dependent perturbation function fy(r",t;k),

Py = PiPy_y (1 + f¥] = P10, (2.15)

where

A 1 A
Pi(xq,t;k)= = 1)’/PNdrN
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is the probability density for particle 1 chosen at random (Morris & Brady 1996) and
the function Pj?,il‘l(r’v ) is the steady non-equilibrium conditional probability of finding
— 1 particles given that there is particle 1 at x;.
Usmg the Smoluchowski equation (2.12), governing the conservation of
PN(xl, ; k), and integrating by parts, we arrive at

. 1 P
F=N'/[1+(N— e-rs] eken — - dwdr?
=ik- /[11 + (N — 1) j,e* ’Z]C‘k *dx, drV (2.16)

where fa is the probability flux associated with particle o given by (2.13), but now in
the new coordinates (x, r"), instantaneously centred at x,

N
Jo=UyPy =Dy -V, Py — Z(Da,s _Dal)i)N'Vﬂ(lni)N +V), 1<a<N. (217)
B=2
For an arbitrary linear flow U, may be written as
U,=T":(ry+x)+U +U, "), o =2, (2.18)

where I' is the constant traceless velocity-gradient tensor, U* = U®*(xo) — I' - x, with
U™ being the bulk average velocity measured at an arbitrary field point, xo, and U,
is the configuration-dependent velocity fluctuation. Equation (2.18) holds for particle
1 upon substltutlon r1 =0. Substituting (2.17) into (2.16) and taking into account that
F,=N"1 f Ple‘k *1dx; we integrate out x; to obtain

F=k-1"-VkF—%<ﬁk-l"-V,ﬁ*>+ik-U*F
— Fkk:—— ! /[Dn + (N — 1)Dye* 21 Q dr"
(N —1)!

. 1 / / ik‘rz N
+ Fiik - V= 1)'/[UM—(N—I)UZG: 10 dr

: 1 ik-r)
~ Rk o ([ Di+ (D2 — et 10 Valln @ + V] dr

1 "

— ik oy [(0n = D)t 0Vl @ + VIdr", (219)

The first two terms on the right-hand side of (2.19) result from the undisturbed linear
velocity in (2.18):

| . . A A .

ik - N /[F X1+ (N —=DI - (ry+x;) e ]k pydx, dr?

1 . . |
=N< (k,0) k- T -Vn(k, 1)) = k-T-VkF—N(nk-F-an ). (2.20)

We can simplify (2.19) further by noting that the total velocity disturbance must
vanish, 1.e.

/[U/l—i—(N—l)U/z]er"’:
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so that the second integral on the right-hand side in (2.19) can be rewritten
. 1 ! (aik T2 N
F‘Ylk.(N—2)!/U2(e — I)er . (221)

Next we note that the particle mobility Dy; is given by the isolated-particle value
Dyl plus the contribution from N — 1 other particlest, i.e. Dy = Dol + (N — 1)D};.
Further, for identical particles

D\, —D{; + Dy, —D>; =0.

Thus we have

F=k-1'"-VkF—%(ﬁk-l'"-Vkﬁ*)—l—ik-U*F—FsDkz
— F,kk (N_12)' /(D’11 + D% ) drV
+F5ik-(N_12)!/U’2(eik"2—1)erN
— Fiik- (le), [0 =Dyt — 110 Valln 0 + v dr®

. 1 -
— Rk / (Dys — Dyy)e* ™™ Q- V3[ln O + V]dr". (222)

Substituting (2.15) into F as given by (2.14) and integrating over xi, it appears that
F is linear in Fj:

1 A
Flk,t)=F, ——— [[1+ (N —1)e*"]Qdr". 2.23
(k1) = P iy [ 11 +(V = D1 0dr (223)
Here we have made use of the fact that F,(0, t)=1, so that F(k, ¢)§(k)=35(k). Since
the average perturbation must be zero,

/P((;V—l)lfN dx" =0,

it follows from (2.23) that in the low-k limit F(k, t) asymptotes to S(k),
F(k,t)y=1+n /(g(r) — e rdr 4+ 0(k*) = S(k) + O (k?), (2.24)

where g(r) is the steady pair-distribution function defined by Plo‘1 =ng(r) and S(k) is
the non-equilibrium static structure factor. In the derivation of (2.24) we have ignored
the delta-function term N§(k); this Fourier transform of the large scattering volume
7" is irrelevant to our subsequent analysis (see Rallison & Hinch 1986).

Quantities are scaled as r~a, U~7ya, k~a',D~ Dy and t ~a*/D,, and the
Péclet number is defined as Pe=ya?/Dy, where y = (I':I')"2. We do not
employ alternative symbols to denote dimensionless quantities and all quantities
are dimensionless unless stated otherwise in the following. By comparing with (2.6)
the short-time effective transport properties may be determined by considering their

+ It will be shown later that velocity fluctuations cannot be added in the same pairwise manner,

ie. Ul= Z?’%i U, since it would lead to divergence of the resulting integral.
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contribution to the initial value of the logarithmic derivative d,log F,

d log F(k,0) = Pek-T-ViInF —Pe(NS))™ (nk-I-V;n*) + Peik-U"

1 1 ’ ik-r
—S—Okz——kk = 2)‘/(D11+Dzlek )P0 dr¥

Pe 1 .

ik — / lk'rz_l POd N
+ SOI (N—2)!/U2(e ) r

1. 1 -
—Slk'(]vz)'/[(Dzz—Dzl)(elk 2 —1)]P0‘V2[1nPO+V] drN

0 —2)!

1 . 1 ik-r
_Solk.(]\,—:s)!/(D23 —D21)€k ZPO‘V3[IHPO+ V] drN, (225)

where P*=Py_,, to simplify notation and Sy = $(0)=1+n [(g(r)—1)dr. The short-
time or initial collective velocity, giving the O (k) term in (2.25), is
1 1
Us=U"————— [ (Dy; —D»)P°-V5[ln P° + V]dr". 2.26
0 SO(N—3)!/( 23 21) 3[InP”+ V]dr (2.26)
If the initial distribution is the equilibrium one, then the integral in (2.26) is zero.
This integral is likely to be zero for most flows, based on symmetry arguments.
Expanding the exponential e*'" and identifying the terms quadratic in k, the initial
collective diffusivity is found from (2.25) at k — 0 as

1 1 1
D~ —I+————— [[D,+D5]P°drY —F
0 S0+SO(N—2)!/[ 11 + D2 r T kk
1 1
_Sioi(N—z)' /rz(Dzz—Dzl)PO‘Vz[ll’lPO—l-V]drN
1 1
TR / r2(Dy; — Dy;)P° - V5[In P° + V] dr?, (2.27)

where %, is the k* tensorial coefficient of the small-k expansion of the velocity
fluctuation integral — the term on the right-hand side of (2.25) containing U5. In
deriving (2.27) we have expanded the factor '™ for small k (except for the velocity
fluctuation integral) assuming that all integrals over r" are convergent.

At long times, the perturbation fy is O(k) due to the long-wave nature of the
response and can be written as fy =ik-by, where by(r",t) is a vector function
independent of k (Morris & Brady 1996; Brady & Morris 1997). Substituting this
ansatz into (2.22) we find that the long-time collective velocity is unchanged,

Ue = U, (2.28)

while the long-time collective diffusivity differs from its initial value only in the terms
involving third-particle effects,

1 1
D —DC (_3)/bN(D23_D21)'V3[lnPO+V]drN
1 1
_S()(N_3)|/(D23—D21)PO'V3bN dr?. (2.29)

We conclude that when hydrodynamic interactions are neglected, there is no change
in the collective diffusivity with time for an arbitrary Péclet number and particle
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concentration. In the following, we therefore omit the subscripts ‘0’ and ‘o0’ of D¢ for
simplicity.

2.2. No hydrodynamic interactions

In this section, we develop results given in general form above for the case in which
the particles have no hydrodynamic interactions. Results are developed completely
(to numerical values with appropriate tensor form) for the low- and high-Pe limits.
Following from the point just made at the end of §2.1, we see that in the absence
of hydrodynamic interactions between particles, the long-time collective diffusivity
equals its initial value, and (2.27) reduces to

c_i 1 0 0 N
D= ¢ [l (N_z)!/rzp Vs[ln P° + V] dr } (2.30)

The influence of flow is found in the Pe-dependent structure, i.e. via both P° and S,.
Referring to (2.27), we see that third-particle effects enter through the final integral
which vanishes when hydrodynamic interactions are neglected, and thus (2.30) is not
simply a pair-level result. We can further write

1
] /r2P0V2[ln P’ +v]drY = n/rg(r)V[lng(r) +(V)3ldr,
where
1
(V)= M/VPI(\)/22(r3,...,rN|r2)dr3~~~ dry
is the potential of mean force averaged over the conditional probability P272‘2 of
finding N — 2 particles at r3, ..., ry, given that there is a particle at r,. Hence, the
collective diffusivity becomes
1 3
D= — I—gb/rg(r)V[lng(r)—i— (V)ldr|, (2.31)
S() 4r

which is valid for arbitrary Pe and particle volume fraction ¢ = %na3n. At
thermodynamic equilibrium the particles are Boltzmann distributed, g/ = exp(—(V')9),
and the equilibrium collective diffusivity is isotropic and is (in the dimensional form)
. Dy 21

3 9

D =
“ 7 59(0)

= (6mna (2.32)
as it should be for non-hydrodynamically interacting particles. To make progress in
the general case, i.e. out of equilibrium, (2.31) can be simplified in the dilute limit,
where for hard spheres g°(r)=1 at |r| > 2 and (V))=0. After integration by parts,
(2.31) becomes

1 3 6
D= — |I+1p— —-1)d — 2)—1)ds2|, 2.33
g o [ n=narsol § -1 .3
where n = — r/2 is the outer unit normal vector to the surface of contact, r =2, and

g(2) denotes the contact value of the pair-distribution function (which has angular
dependence on the solid angle £2). We have used Vg(r)=V(g(r)—1) in order to
neglect the integral at infinity. The first term plus first integral on the right of (2.33)
can be written in terms of the static structure factor deviation from its equilibrium
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value at k=0 as

D° I(14 AS) + ¢g fnn(g(z) — l)dQ] : (2.34)

TS
where ASy=S) — Sy’ and S;? ~1—8¢. Note that at equilibrium, g(2)=1, AS;=0
and thus (2.32) is recovered.

High Péclet number

For linear flows at large Péclet number, the asymptotic solution for the pair-
distribution function g(r) obtained in the radial balance approximation (Brady &
Morris 1997) gives contact value of

A

g(2) ~ —%Peyr +0(1), for y,=n<E-n <0, (2.35)

where Pe>1 and Eij=(ﬂj + I7;)/27 is the dimensionless rate-of-strain tensor.
Length is scaled with the sphere radius a. It follows from (2.34) that for a dilute
suspension

1 4
D = (1+ASO)I—¢P6}{ y-nn d2 +0(1). (2.36)
S() T ¥ <0

Although the shear-induced diffusion enhancement given by the integral in (2.36)
can be calculated for an arbitrary linear flow, the asymptotic evaluation of S(0)
in the large-Pe limit is a formidable task even without hydrodynamic interactions.
While the radial balance approximation can be exploited to determine the leading-
order solution for g(r) in the compressional quadrants, it is not applicable in the
extensional quadrants (y, > 0), where low-g wake-like regions extend from the surface
of contact to some large distance r ~ L(Pe) downstream where they are smeared by
a weak transverse diffusion. In the compressional quadrants g(r) ~ Pe in the vicinity
of the surface of contact (2.35) while the thickness of the radial boundary layer is
~Pe™!. Therefore, the boundary layer at small ¢ contributes the value of O(1) to the
volume integral of (g — 1) and its positive contribution to the AS, is estimated as
O(¢) at most. On the other hand, the long low-g wakes in the extensional quadrants
may diminish the value of Sy considerably due to the flow-induced ‘excluded volume’
effect. The microstructural deformation at large Pe was determined numerically by
expanding g(r) into spherical harmonics and integrating (g — 1) in the entire domain.
The negative (i.e. ‘excluded volume’) contribution of wake-like regions to ASy in the
simple shear flow, was estimated to be of 0(¢JP7) (see the Appendix for details).

Since for the dilute suspension So=1— 8¢ + A Sy, one can re-write the first term in
(2.36) as

8¢
1+ ASy’

the effect of the suspension microstructure deformation on the collective diffusivity is
always small and the second term in (2.36), which scales linearly with Pe, yields the
leading-order contribution to D°.

Previous calculations by Brady & Morris (1997) showed that the dimensional
long-time self-diffusivity for the same problem is

1
(14 AS) =1+
So

2
D}, = Dol — ya’$ 5 7{ yonn ds2. (2.37)
yr<0



Collective diffusion in sheared colloidal suspensions 317
Comparing only the leading high-Péclet-number terms gives

220%
D =6D, =L 222
n9 ¢
where X’ is the contribution to the bulk stress from contact integrals in the com-
pressional quadrants, y, < 0:

9
Y = ny¢*= ynndS2.

¥, <0

For example, in the simple shear flow, I} j = 8i102,, we have in the dimensional form

' ¢ P 32
DY, = Dy = 2D5; = ﬁya%' (2.38)

Low Péclet number

At low Péclet number the pair-distribution function can be written g(r) = g% (r)[1+
p(r)], where p is the entire Pe-dependent perturbation to the equilibrium micro-
structure. For a dilute suspension, g/ =1, and we have, in place of (2.34),

1 6
D= {(1 + AS + 7{ nn p(2)df2] . (2.39)

Here the shear-induced deformation of the static structure factor from its equilibrium
value can be written as

3
So— S = ASy = ¢4n/ p(r)dr + 0(). (2.40)
r>2
In Brady & Vicic (1995), the asymptotic expansion of p to O(Pe?) has been
determined with and without hydrodynamic interactions between particles. Without
hydrodynamic interactions, the contact value of p is given by
N 128

2 A 8 A A 8 A A A
=—Pe-n-E- \ =nE-2n+ —n-E-E-n+ __E:E 312
p(2) = —Pesn-E-n+ Pe (27n 2-n+ =n n+ o1 >+O(Pe )

where £; i = (Ii; — I';)/2y is the dimensionless bulk vorticity tensor of the imposed
linear flow and the notation n,f?,»kfzkjn ; for the first term in brackets is employed.
Since the static structure factor can be written as Sy =1 — 8¢ + ASy + O(¢?), and in
a weakly sheared suspension ASy=o0(¢) (see the Appendix), the first term in (2.39)
can be re-written as

1
§(1 + ASo)l = 1+ 8¢ + O(?).
0
Therefore D becomes

. 32 .
D = (1+8¢)1—¢PecE
128 0 ~ 128 . . 1024 . 4

P’y —E-Q+ _E-E+ ——(E:E)I Pe’?, ¢%). (241
+ope {80 4 SRE-E 4 DR ]+ 0P ()
While a uniformly valid asymptotic expansion of p(r) beyond O(Pe®) may include
terms with non-integer powers of Pe due to non-negligible convection effects, it was
found that the ‘outer’ solution is slaved to the ‘inner’ expansion, and thus the contact

value p(2) possesses an expansion in integer powers of Pe up to O(Pe/?).
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2.3. Hydrodynamic interactions

We now turn to the more difficult problem of evaluating the collective diffusivity with
hydrodynamic interactions. We shall only consider the analytically tractable case of
a weakly sheared suspension, i.e. the low-Péclet-number limit. In the work we make
use of certain prior results on the structural distortion induced by weak shear flow.
The added complexity of hydrodynamics in the dilute theory is largely the result
of long-range hydrodynamic interactions, with expected effects on the integrals of
velocity fluctuations. Nonetheless, results will be found to be qualitatively similar to
the results in the absence of hydrodynamics presented in the previous section, with
one important exception being a weakly divergent (as logk for k — 0) diffusivity with
tensor form given by the rate of strain, and hence having an impact only on the
off-diagonal diffusivity terms in simple shear flow.
From (2.27) after neglecting the direct third-particle effects we have

‘ 1 3 . 31 ,
D¢ = 5 [H_d)éln /(Dn +D21)dr} +¢ES*O [/(DM + Dyy)pdr

- /"(Dzz —Dy):Vp d"] — Fu+ 0, (242)

where p(r) denotes the entire Pe-dependent uniformly valid perturbation to the
equilibrium microstructure, and %, represents the O (k?) tensorial coefficient of the
small-k expansion of the velocity fluctuation integral:

31 -
Pe— — ik- Usye* " —1)dr. 243
oPeg ik [ Ui = Dar (2.43)
The integral in the first square brackets in (2.42) is not convergent as it represents the
sedimentation velocity and must be properly renormalized, as shown by Batchelor
(1976). Together with the excluded volume O(¢) part of Sy, the first square brackets
give the equilibrium collective diffusivity,

DS, (Pe = 0) = [l+¢43n /(D’n +D21)dr} =I(1+1.47¢) + 0(¢%). (2.44)

1
1—8¢
For a weakly sheared dilute suspension, So=1—8¢ + AS;+ O0(¢?), and the first
square brackets in (2.42) can be rewritten as

1
So
The third integral on the right-hand side of (2.42) can be integrated by parts to give

/"(Dzz —Dy):Vpdr = —87{ n-(Dy — Dy )np(2)ds2
r=2

[I + qb% /(Dil + Dzl)dr} = 1(1+ 1.47¢) — 1 AS, + O(¢?). (2.45)

+ ?{ n+(Dy — Dy)nr p(r)d2
s

0

— /prV'(Dzz—Dzl)d"—/(D/zz_DZI)p dr

_ / pdr, (2.46)

where we have expanded the scaled isolated-particle diffusivity as Dy, = I+ D’,. The
first integral is zero since D,; — Dy; = D, /2 and the relative diffusivity, D,, vanishes
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at contact. The surface integral at infinity is also zero, as p decays exponentially at
large r > Pe™'/? almost everywhere.

Finally, the integral containing D), in (2.46) can be combined with that of D/, in
(2.42) to give

1
/(D/u+D21)Pdr—/"(D22—Dz1)'VP dr=2/ D/npd"—i-z/prV-D,dr

+ l/pdr. (2.47)

All integrals in (2.47) are absolutely convergent. Moreover, the regular asymptotic
expansion of p up to O(Pe?) (Brady & Vicic 1995) can be used in the first two integrals
since Dj; ~r~*and V-D, ~ r~°, while p; ~ =3 and p, ~ r~!. The last term in (2.47),
if multiplied by (3/4m) ¢/Sy, and using (2.40) gives IASy + o(¢). This term requires
the uniformly valid expansion of p (see Appendix A), but fortunately, it cancels out
exactly with the last term in (2.45) and D§ up to O(Pe*) can be calculated through
the regular asymptotic expansion of p. Hence, the resulting gradient diffusivity (2.42)
will have the form

1
D“=l(1+1.47¢)+¢43n[2/ D;Ipdr+2/prv-n,dr} —Fu+0(). (248)

Now we turn to the velocity fluctuation integral (2.43) which is divergent if
hydrodynamic interactions are considered in a pairwise additive manner. Expanding
the phase factor e for small k leads to F in terms of the integral of Ulr
over the whole space, and for neutrally buoyant spheres in linear flows U, =
(Uy —U,) — I'-r ~ r~2 Therefore, a small-k expansion under the integral sign
in (2.43) leads to a divergent integral. The divergence of ensemble averages due
to long-range hydrodynamic interactions in unbounded suspensions is well-studied
(Batchelor 1972; Hinch 1977). Thus, the velocity fluctuation integral needs to be
re-normalized in the standard fashion for non-convergent hydrodynamic interactions.
Note that this term would be non-convergent even if we had not expanded e*'”
(meaning it is not the weighting with r that causes difficulty), and we cannot simply
add velocity fluctuations in a pairwise manner. Following Brady et al. (1988), we write
the velocity of particle 2 due to the motion of particle 1 averaged over all positions
of particle 2 to obtain

ik-/ (U§—U3°C)(a""’—1)dr+kk:/ rus”dr,
r>2 r<2

where we have expanded the exponential in the last integral. This integral arises from
the ‘backflow’ being defined over the whole space, not just that outside the particle
at r =2. Here, U™ is the far-field part of the velocity disturbance that decays as r—2.
The difference U, — U™ decays as r—* and the integral is absolutely convergent. In
this case we cannot simply expand the exponential in the first term as the r weighting
results in a conditionally convergent integral. We can, however, extract terms that

decay faster than r—* by defining

U, —-U;* =U" - U5+ U5, (2.49)
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where U5" contains terms up to r—*

fluctuation integral becomes finally

ik-/ (U;°—U;°°)(eik"—1)dr+kk:/
r>2

r<2

and U} is the remainder. Thus, the velocity

rU'fDdr—kk:/ rU%dr, (2.50)

r>2

where all integrals are absolutely convergent. Other than the integral involving the r—*

dependence of U), the integrations to evaluate D¢ are straightforward. This integral
may be written

ik-/ (U5 = U5 ) —1)dr
r>2
=ik-/ r-E- [(A7(r) = B(r)) nn + B(r)l] %" dr, (2.51)
r>2

noting that, due to symmetry, the discarded term (involving the —1) vanishes. Here
A and B are the r—° far-field dependences of the hydrodynamic functions
A(r) and B(r) specifying the radial dependence of the velocity disturbance in a pair
interaction (Batchelor & Green 1972)

(Uy—U,)—T+r=—r-E- [A(r)nn + B(r)(I — nn)] ,

and for identical spheres of unit radius, these are

AT =873, and B9 = Er_5
9 3 .
Substituting these values into (2.51) we arrive at
N 40 niniNy k., 16 Smji’ll ik-r
lkjE[m |:3 /r>2 r74 € dr — ? /r>2 7 € dr|. (252)

Recognizing that the integrals over the angular dependence are proportional to kkk
and kI, the entire result must be proportional to k- E-k. To perform the integrations
we write the integrals as

oA Omi - N K (k
1kjE1m/ il gk dr = oy Eyyk; A (2.53)
2 T k

ik E / Bl giker qp — i, E 873,/%(/()

s r>2 ré B J 8kjak[akm )

R %/ <%//
= —k E;kn <k3 — k2> , (2.54)
where
eik-r eik'r
H (k) =/ —dr and ./Z(k) :/ —dr.
r>2 T rs2 T

The evaluation of expressions involving both these functions in (2.53)—(2.54) is
straightforward and, for instance, for 2" yields

A (k) 1/ ip elfrr dr = 4w [* krcoskr — sinkr 4
r>2

k k r4 T o r4

r

- 3—“3[a cosa + a*Ci(a) — (1 + o) sina]  (2.55)
o
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where p is the cosine of the angle between k and n, « = 2k and Ci denotes the cosine
integral function. Taking the limit £k — 0 we find

A'(k)  4n
25

4
Ink +1In2+ yg — 3> + 0 (k?),

where yr ~ 0.5772 is the Euler constant. Analogously,
MM A <

23
o =15 (Ink+in24y —)+0(k2).

15

Inserting these expressions into (2.53)—(2.54) and gathering according to (2.52) we
finally obtain that for small k

ik~¢/ (U5 = U5 e* " —1)dr = _”an) <lnk +In2 4y — Z) k-E-k+O(KY).
2 (2.56)
Noting that
U =—5r"n- E-nn =—5r"yn,
the second integral in (2.50) over the excluded volume r < 2 yields
/ er;% dr = —MTEE. (2.57)

The last integral in (2.50), evaluated numerically, yields

/ rUsdr = —E: ]{”"”” dQ/ (A" — B"yr*dr —E- %nn d.Q/ B"r*dr
r>2 2 5

N 4m 4 4m o
— TTE(125) TE0.23) =~ TE(23), (258)

where A”(r) and B”(r) are the o(r—°) truncated hydrodynamic functions according to
(2.49). Thus, collecting all the contributions in (2.50) we finally obtain the contribution
of the velocity fluctuation integral to the collective diffusivity:

1 ‘ R
¢Pe%S—ik- /U;(elk" —1) dr = —8¢Pe (Ink +In2 +yz — 1.55) k -E -k
0

+0(k%, ¢?).
(2.59)

Note that the abnormal scaling ~ Ink is affecting the components of D° which have
the geometry of the imposed flow E. Therefore, in the case of a simple shear flow it
only influences the off-diagonal collective-diffusion coefficient D, (Df; = D5; = 0 by
symmetry), while the diagonal components of Dj; are truly diffusive, as we shall see
below.

To complete the asymptotic evaluation of D° at O(Pe) we also must evaluate
integrals on the right-hand side of (2.47):

/ piD)dr = —E: f nnnn d2 / q(r)(x{y(r) — ¥, (r))r* dr = é%’5"':2'(0.44) (2.60)
r>2 2

and

/ pirV-D.dr = —E: ?{nnnn d.(z/ q(NZ(r)r’dr = %é (—=2.57),  (2.61)
r>2 2
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where ¢(r) is given in (A 37). In (2.61) we exploited the fact that

V-D, =nZ(r)=n {G’(r)+2G(r):H(V)}.

Here x{,, y{;, Z(r), G(r) and H(r) are known mobility functions (Jeffrey & Onishi
1984; Kim & Karrila 1991).
Gathering all contributions, the collective diffusivity is given to O(Pe) by

D¢ = (1 + 1.47¢)1 + 8 (Ink + €)p PeE + O(¢>, Pe?), (2.62)

where € = In2 4 yr — 1.64 ~ —0.37. Note that the coefficient of the term linear in
E is negative for small k, in agreement with the sign found without hydrodynamic
interaction.

To complete the evaluation of D¢ to O(Pe?), it follows from (2.48) that we also
must determine

3 1
P {2 / D'y pa(r) dr + 3 / rV D, ps(r) dr + / rU'zpl(r)dr] : (2.63)

where the last integral comes from small-k expansion of the velocity fluctuation
integral (2.43). The first two integrals are convergent as discussed just after (2.47),
while the last integral is convergent since p; decays as r— for large r and U5 ~ r—2. It
is expected from the form of p;, p, and U} that the O(Pe?) contribution is quadratic
in the imposed flow and is a linear combination of E- 2, E-E and (E: E)l as was the
case without hydrodynamics (2.41). The constant coefficients are to be determined by
numerical integration. The velocity fluctuation integral in component form is

/riUZ,fpl(’)d’ = Bk, fn,-njnkmnrns de /(A(r) — B(r)) q(r) r*dr
+ E_ikErs %ninkn,nx ds2 / B(r) q(r) r*dr

2 8 2
=4n |:105 EksEks 81111 + (105f1 + 5¢2> 1kEkJ:| ’ (264)

where the numerical evaluation of the radial integrals in the two terms on the right-
hand side yields .#; = ["(A(r)— B(r))q(r)r*dr = 20.90 and %, = [,° B(r)q(r)r*dr =
2.36, respectively, and the surface integrals are evaluated using the identity

1 1
in f{na]naz Ny, A2 = CEN Z Scror Ocsars - + - ety »
m even P

where p is the number of all possible index permutations. The first two integrals in
(2.63) can be written in the form

/ nn po(r) 702(r) dr (2.65)

where 7 = x4 (r) — y¢,(r) and 7@ = rZ(r) for the first and second integral,
respectively. Substituting the known expansion for p,(r) in terms of h,(r)-hs(r)
(Brady & Vicic 1995, Appendix) and using the above identity for integrals over the
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unit sphere, we arrive at the following result for (2.65):
A A 2 A A
i [(105/¢21 P+ jm) EiEyj + *f(sl’z) Ei 2y

2
+ (ms A1) 4 /4” n fslz) EpmEm 6,,} , (2.66)

where
S = / ho(r) 752 (r) r2dr.
r=2

Evaluating ¢ numerically and substituting these results together with (2.64) into
(2.63) we finally obtain

= (14 1.47¢)1 + 8 (Ink + %) ¢pPeE
+ ¢Pe*{0.063E- R +580E-E +1.22(E:E)} + 0(¢*). (2.67)

Note the similarity between this result and the approximate solution without
hydrodynamics (2.41) except for the weakly singular term linear in E. In the simple
shear flow, I7; j =23i102,, where the measurements and simulations are most feasible,
the shear-induced enhancement of the collective diffusivity is expected to be small,
O(¢Pe?), with the transverse components in the dimensional form given by

(D5, — Dg,)/Do = 2.08 ¢Pe*, (D53 — D, )/ Do = 0.61 pPe’,
where Dg, = Do(1 + 1.47¢).

3. Brownian Dynamics simulations
3.1. Simulation method

The long-time collective-diffusion tensor was determined using Brownian Dynamics
(BD) simulations of a hard-sphere unbounded suspension in the simple shear flow,
U” = ypye,. These simulations do not include hydrodynamic interactions. The
simulation box is cubic with periodic boundary conditions in the three principal
directions. We use an algorithm similar to one used in Foss & Brady (1999) and
based on the potential-free method of Heyes & Melrose (1993) and Schaertl &
Sillescu (1994). The displacements of the particles are governed by the following
evolution equation:

Ax = Ax® + Ax™S + X(Ar), (3.1)
where Ax® = U” At is the affine displacement over a time step due to imposed flow
and is equal to yye, At for a simple shear flow; Ax/S is the displacement due to a
hard-sphere potential; X is the random Brownian step with zero mean and variance
equal to twice the Stokes—Finstein diffusivity of a single particle, Dy,

X =0, and X(At)X(At)=2DylAt.

After the affine and the random Gaussian contribution are added, the algorithm
searches for particles pairs that have overlapped and moves each particle along
their line of centres to contact in response to the ‘hard-sphere-like’ potential. The
procedure is repeated until no overlapping sphere pairs are present and the resulting
displacement vector AxS is added to the first two. This is the major difference
between the present algorithm and the scheme used by Foss & Brady (1999), where
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this procedure is only called once on each time step and thus a small amount of
inherent ‘softness’ due to three-body effects is allowed.

It has been demonstrated in Leshansky & Brady (2005) that the collective diffusivity
D¢ of particles suspended in an unbounded linear flow can be identified through the
evolution of the dynamic structure factor F in (2.6). Specifically, we apply the
following ansatz:

k-2(k) -k =—ik-(NFK*)~ <Z U/ el xalt)=xs(0) > (3.2)

where k = k/|k|. Here U, is the configuration-dependent velocity fluctuation of
particle «, i.e. the velocity of particle @ relative to the bulk uniform and shearing
motions measured at some reference point, x,

U,=T"(xy—x0)+U"x0)+U,=T-x,+U +U,,

with U* = U*”—T - x,. The formula (3.2) describes diffusivity in an arbitrary direction;
it was derived from purely kinematic considerations and therefore holds regardless of
the microscopic dynamics of the system. On the other hand if one is only interested
in diffusivity in the direction transverse to the direction of the undisturbed flow, i.e.
for k-T'+k = k-U" = 0 the convective terms on the left-hand side of (2.6) drop out,
yielding the familiar quasi-equilibrium solution for F' describing exponential decay of
F(k,1),
F . .

“oF =k-9,(k) k. (3.3)
Equation (3.3) is well known for equilibrium colloidal dispersions, where in the
absence of an imposed flow k-9-k = 9(k), with 2(k) being a scalar due to spatial
isotropy. In the simple shear flow & is a second-rank tensor, and the two distinct
transverse collective-diffusion coefficients, Dy, (velocity-gradient direction) and D,
(vorticity direction), respectively, can be extracted by probing the dynamics of F(k, t)
at small ak.

3.2. Results and discussion
Collective diffusion at equilibrium

First we test the proposed approach by calculating the equilibrium long-time
gradient-diffusion coefficient, D;, (Pe =0) at different particle volume fractions ¢ =
0.10-0.40. The computational efficiency of the BD algorithm allows for systems with
a large number of particles, while in most cases we found that systems with N = 256
particles provide accurate results for moderate concentrations up to ¢ = 0.30.

Following Sierou & Brady (2004) and Leshansky & Brady (2005), the values
of F are averaged over all possible (overlapping) time intervals available for each
simulation run to reduce the statistical noise. To further improve the statistics, we
average the data over 32 long runs of up to 50 time units, scaled with the diffusion
time (a®/Dy), starting from independent hard-sphere configurations. Figure 1 shows
the time evolution of the dynamic structure factor plotted in the form —k—2In F as
a function of scaled time. Here, F is calculated using (2.9) at the cutoff wavenumber
k. = 2n/H, where H is the dimension of the cubic simulation cell, and averaged
over all directions due to isotropy of the equilibrium suspension. It is evident from
figure 1 that all the curves are straight lines and, therefore, in the absence of flow the
linear diffusive regime is established immediately (on the time scale ~ a?/Dy) and F
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FGURE 1. Evolution of the dynamic structure factor, —k—21n F, at Pe =0 probed at k =2r/
H, vs. time scaled by (a?/D,) for a system of N =256 particles and different concentrations.

decays exponentially according to (3.3). The collective diffusivity, determined as the
slopes of the curves, is an increasing function of ¢. This observation is in contrast to
the long-time self-diffusion, where increasing frequency of particle collisions hinders
self-displacement of the particles.

In the absence of hydrodynamic interactions, the mobility of each particle is
unaffected by the presence of other particles, # = 1, and therefore, from (1.1), the
collective diffusion is driven solely by the osmotic compressibility, with the diffusivity
being equal to the inverse of the equilibrium static structure factor at zero k,

D/ Dy = $°(0)". (3.4)

The values of S; can be estimated for the hard-sphere dispersion up to ¢ ~0.5 from
the Carnahan—Starling approximation (Russel, Saville & Schowalter 1989),

(1—¢)*
1+ 4¢ +4p2? — 4¢3 + ¢+’

The comparison between the results of our numerical simulations from figure 1 and
the analytical prediction (3.4) is presented in figure 2. There is excellent agreement
between the two up to a concentration of ~0.3, while for higher volume fractions
the values of D¢ from the BD simulations (I symbols) are underestimated. Finite-
system effects are responsible for this discrepancy. Indeed, when we repeat the BD
simulations for a system of N = 1024 particles (o symbols in figure 2), there is much
closer agreement for the volume fractions up to 0.40. It is interesting to note that the
static microstructure of the suspension sampled at all & values appears to be well-
captured with N =256 particles (see the inset in figure 2), while the time correlation
remains measurably affected by the periodicity of the boundaries.

5°4(0) =

Sheared suspension at arbitrary Pe

When the suspension is sheared, the collective diffusivity in directions transverse
to the direction of flow is determined in the same way as for the equilibrium case
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FiGure 2. Equilibrium (Pe = 0) collective diffusivity calculated from the decay of F probed at
k. = 2rn/H for systems of N = 256 ((J) and N = 1024 (Q) particles. The solid line is §¢/(0)~!
computed from the Carnahan-Staring approximation. The inset shows the static structure
factor S vs. wavenumber (< and >) calculated from BD simulations (for N =256 particles)
together with the Percus—Yevick closure (Russel et al. 1989) (dashed and solid curves).

using the time evolution of F. All calculations are performed in a steadily sheared
suspension starting from initial random hard-sphere configurations after they have
been pre-equilibrated for ~ 10-20 dimensionless time units depending on particle
concentration and the shear rate, i.e. Pe. Time is scaled with a?>/D, for Pe<1 and
with y~! for Pe > 1. The time needed for the shear-induced microstructure to develop
is conveniently monitored by the static structure factor; the typical evolution of the
averaged S(k) is depicted in figure 3. Note that relaxation of S(k) itself is diffusive
and could be used to determine the collective diffusivity (Marchioro & Acrivos 2001),
but this approach requires one to bias the initial configurations so that S is initially
far from its form in the steadily sheared state.

The calculation of F is performed for a range of Pe and volume fractions at
k=kee,, with N =256 particles and the same time-averaging procedure as in the
previous paragraph is applied. We find for Pe > 1 that the error due to the finite
box size is within the margins of the statistical error for most ¢. No attempt was
made to simulate systems with progressively larger N and extrapolate to the limit
1/N — 0. The transverse collective diffusivities determined are plotted against the
Péclet number for ¢ =0.15, 0.25 and 0.35 in figures 4(a), 4(b) and 4(c), respectively.
The agreement with the asymptotic result (2.41) is very good, although the departure
in the diffusivity from its equilibrium value ~ S¢(0)~' occurs far beyond Pe=1,
while the asymptotic solution is formally valid for Pe < 1. Nevertheless, it seems to
predict the turnover point rather accurately in all three cases.

The high-Pe asymptotic prediction (2.38) is in excellent agreement with the
simulation results. The linear scaling of D¢ with Pe and the difference between Dy,
and D¢, predicted by theory are evident in figure 4. To demonstrate the ¢-dependence
of the collective diffusivity we plot the high-Pe (Pe=3000) values of Dj,/ ya* and
D¢ /ya* vs. ¢ in a linear-log plot in figure 5. Good quantitative agreement between
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FIGURE 3. Typical evolution of the non-equilibrium static structure factor, S(k), at the cutoff
wave-vector k = 2n/H e, ., vs. dimensionless time y¢ for ¢ = 0.25 and Pe = 5.

the asymptotic results and BD simulations is obtained without adjustable parameters.
Finally, the high-Pe results for collective diffusivity from BD simulations are compared
to existing experimental results in figure 6. At high shear rates hydrodynamics play
an important role in collective diffusion and the scaling with ¢ is not linear as
anticipated from the dilute theory and BD simulations. Note that BD simulations
of concentrated suspensions starting at ¢ ~0.4 exhibit unphysical string-ordering
owing to the periodicity of the boundaries and, therefore, results are presented up
to ¢ = 0.35. Analogous simulations performed with accelerated Stokesian Dynamics
with no Brownian motion in Leshansky & Brady (2005) (A and V symbols in figure
6) show much better agreement with experiment than BD simulations.

Static structure factor of the sheared suspension

Finally, we address the microstructure of the sheared suspension in terms of the
static structure factor at small k. Although we have shown that only the value of
S¢1(0) matters for the asymptotic analysis of the collective diffusivity at low Pe, the
microstructural deformation is most readily measured in light-scattering experiments
via S(k) (Johnson, de Kruif, & May 1988; de Kruif et al. 1990; Wagner & Russel
1990). Numerous investigations of the microstructure of suspensions under shear have
been published (Morris & Katyal 2002; Vermant & Solomon 2005), but the static
structure factor at zero wave-vector, S(0), has not been fully addressed. Measurements
at small k, or large wavelength, are problematic due to geometric limitations.

Dhont (1996) considered the Fourier-transformed Smoluchowski equation to study
the effect of weak shear flow (Pe < 1) on the microstructure of a dilute suspension of
spheres without hydrodynamic interaction. This theory anticipated no shear-induced
distortion of the equilibrium microstructure in the plane orthogonal to the direction
of the flow. In Blawzdziewicz & Szamel (1993), it was first predicted theoretically
that there is a non-zero deformation of the equilibrium microstructure in the plane
transverse to the flow direction. They found that a dilute weakly sheared suspension
of hard spheres with negligible hydrodynamic interaction undergoes shear thinning
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FiGURE 5. The dependence of the high-Pe values of the transverse collective diffusivity,
D5 /ya* (o) and D /ya® (O), on the particle volume fraction, ¢. The dashed and the
dashed—dotted curves correspond to the asymptotic estimates (2.38) of diffusivities in the y-
and z- directions, respectively.
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FIGURE 6. Transverse collective diffusivity, D¢/ya* at infinite Péclet number, as a function
of particle volume fraction ¢ in comparison with experimental (grey symbols and the solid
line) and theoretical (bold triangles) results. Accelerated Stokesian Dynamics results (A, V)
correspond to shear-induced collective diffusivity for a non-Brownian suspension (Leshansky &
Brady 2005).
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Vicic 1995); ———, the small-Pe asymptotics (A 29); », numerical results of Bltawzdziewicz &
Szamel (1993).

correlated with the structural changes indicated by the non-zero distortion of the
static structure factor, S(k), for k orthogonal to the direction of the flow. Further
theoretical development by Brady & Vicic (1995) showed that the transverse distortion
of the pair-distribution function from its equilibrium value at small Pe scales as Pe’
with and without hydrodynamics. In neither of these studies was the non-equilibrium
static structure factor, Sy(Pe) = S(0; Pe), calculated.

We compute S(k) from BD simulations in two principal transverse directions, y
(velocity gradient) and z (vorticity), after the suspension has been equilibrated for the
time required to reach a steady state. The long-wavelength limit of S(k) is calculated
at the cutoff wavenumber, k. = 2n/H, for a system of N = 256 particles. Since
the equilibrium static structure factor calculated from BD simulations is in excellent
agreement with the theoretical Percus—Yevick closure for a 256-particle simulation
(see the inset in figure 2), we do not attempt simulations for larger systems. The
comparison between these results and the asymptotic small-Pe solution (see the
Appendix) is provided in figure 7, where the deviation ¢~ [So(k., Pe) — Sy7] is plotted
against Pe for different ¢. Note that the dilute theory can only predict the unbounded
growth of —AS, with the increase in Pe. Results of the BD simulations demonstrate
that the magnitude of the flow-induced microstructural deformation diminishes as the
particles concentration increases, and it remains finite as Pe — co. Indeed, as we have
shown earlier in this paper, the low-k deformation AS, is correlated with the length
of the wakes of low pair-probability (g < 1) originating in the extensional quadrants.
Without hydrodynamic interactions and when Brownian diffusion is entirely neglected,
the pairwise theory anticipates wakes of infinite extent (Russel et al. 1989) and thus the
shear-induced deformation ASj is indefinite. When some residual Brownian transport
is retained in the framework of pairwise interaction theory, the wakes are smeared
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downstream by diffusion, yielding Pe'/? and log Pe scaling of |¢~'AS,| without and
with hydrodynamics, respectively (for details see the Appendix).

Obviously, for non-dilute suspensions, there is an additional mechanism of the wake
smearing from shear-induced gradient diffusivity, and a self-consistent theory in which
this influence was included could be contemplated. It is also evident from figure 7 that
the magnitude of the microstructural deformation decreases with the increase in ¢ in
accordance with the above arguments. This is also in accord with the recent findings
of Leshansky & Brady (2005) where the shear-induced microstructural deformation
ASy calculated via accelerated Stokesian Dynamics for dense suspensions, including
hydrodynamic interactions, at infinite Pe was found to be small.

4. Summary and concluding remarks

In this paper we have applied the methodology proposed in Morris & Brady (1996)
for calculation of the collective-diffusion coefficients in sheared suspensions of hard
spheres. The Fourier-transform method is applied to identify the form of the collective
diffusivity from the time evolution of the density fluctuation autocorrelation for an
arbitrary unbounded linear flow.

We found that for weakly sheared suspensions (Pe < 1), the collective diffusivity
possesses a regular asymptotic expansion in integer powers of Pe up to O(Pe?),
while for the self-diffusivity (Morris & Brady 1996) there is already a singularity at
0(Pe*?). As for the self-diffusion coefficient, the leading shear-induced contribution
to the collective diffusivity is linear in the imposed flow, and scales as Pe. For
instance, in a simple shear flow, 1'“,-1- = 8,185, this contributes to the off-diagonal
component, Df,. As found for the self-diffusivity, this off-diagonal diffusivity is
negative.

The diagonal components of the collective diffusivity in the directions of velocity
gradient and vorticity are quadratic in the applied flow and only weakly affected by the
magnitude of the applied shear, while the deviation from an equilibrium value scales
as Pe’ at small Pe. This weak dependence has been confirmed by BD simulations,
showing very good agreement with derived small-Pe asymptotic expressions up to
Pe~0(1). Hydrodynamic interactions result in an enhanced transverse collective
diffusivity as the coefficients of terms proportional to E-E and (E:E)l in (2.67)
are larger than the similar terms in (2.41). The major contribution to these terms
arises from the velocity fluctuation integral (2.64), which is zero when hydrodynamic
interactions are neglected. In contrast to the macroscopically quiescent suspension,
where hydrodynamics hinders collective diffusion at O (¢), hydrodynamic interactions
among particles in a linear bulk flow augment collective diffusion. The antisymmetric
contribution (oc E-$2) is small if hydrodynamics is considered, resulting in a
higher diffusivity in the velocity-gradient direction relative to that in vorticity
direction.

The hydrodynamic interactions between suspended particles do not affect the scaling
of the transverse collective-diffusion components. The leading-order contribution
at O(Pe), on the other hand, is complicated due to the long-range nature of
the particle relative velocity. Renormalization of the divergent integral leads to
abnormal scaling for the cross collective-diffusion component, ~ log(ak), yielding
a weak blow-up. The question of whether this abnormal diffusivity is of a physical
origin is unclear. Without making any statements, we would like to point out an
analogous divergence issue in sedimenting suspensions, where the variance in the
sedimentation speed for a homogeneous suspension of solid spheres is predicted to
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grow without bound in the infinite particle number limit, (U?) ~ N/3¢*? (Caflisch &
Luke 1985), or in our terms ~ ¢ (ak)™' since k oc (¢/N)'/? as k — 0. The weak
logarithmic blow-up in our case for the collective diffusivity ~ log (ak) vs. the (ak)™
singularity in sedimentation is probably a consequence of weaker hydrodynamic
interactions between neutrally buoyant particles in linear flows, |U 5|~ |r| 72 vs. |r| ™! in
sedimentation.

For strongly sheared suspensions, the diffusivity scales with the shear rate,
D° ~ ya®, and we found that D°=6 D’,. The results of the BD simulations validate
unequivocally not only the linear scaling of D¢ with Pe, but also show very
good quantitative agreement with the asymptotic results even for moderate volume
fractions (see figure 5). This result could be anticipated, as three-particle effects
are only involved through hydrodynamics (see (2.27)) and the pairwise theory is
expected to give accurate estimates of the collective-diffusivity beyond the dilute
limit.

Finally, we have calculated the static structure factor of a dilute suspension in the
simple shear flow. Although we have shown that shear-induced deformation of the
microstructure does not affect the outcome of the asymptotic analysis for collective
diffusivity, the static structure factor S(k) is one of the most intensively studied
properties in the colloidal literature and it can be readily measured in small-angle
neutron scattering or dynamic light scattering experiments (see Vermant & Solomon
2005 and references therein). The method of matched asymptotic expansions was
applied to construct the uniformly valid expansion for g(r) in the small-Pe limit
and to compute S(0). This theory is in excellent agreement with previously reported
numerical results (Bltawzdziewicz & Szamel 1993) and with the results obtained using
the numerical approach of Vicic (1999). When hydrodynamic interactions between
particles are neglected, the microstructural deformation (Sy(Pe) — Sg?)¢p~' was shown
to be negative and diminishing with the rate ~ \/lTe for Pe > 1. On the other hand,
when hydrodynamic interactions are included, we found that ¢~'AS is positive up to
Pe ~ 1.5, and diminishes with the rate ~ log Pe at large Pe. The BD simulations show
that ' AS(0) is a decreasing function of Pe as found from the pairwise O(¢)-theory,
while the magnitude of the microstructural deformation reduces with the growth of
¢, as the additional ‘stirring’ mechanism due to shear-induced diffusion is operable in
concentrated suspensions.

The authors thank Johan Bergenholtz for the help with calculating the
microstructural deformation of a dilute suspension at large Péclet numbers. A M.L
and J.F.B. acknowledge the support of the Binational Science Foundation (BSF)
through grant #890020.

Appendix. Microstructure of dilute suspension under shear

As shown in Brady & Vicic (1995), the perturbation to the pair-distribution function,
p(r) defined by g(r)=g®(r)[1 4+ p(r)] is governed in the dilute limit by

V,*D,:V,p=PeV, U, (1+p), |rl>2, (A1)
subject to the boundary conditions

n'D.-V,p=Pen-U,(1l+p) at r=2, (A2)
p~0 as r — oo (A3)
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Here, U, = U, — U, is the relative velocity of two particles arising from the imposed
shearing flow and D, is the relative diffusivity, given by
U =(E+R)r—r-E-[A(r)nn + B(r)(I —nn)], (A4)
D, =2[G(r)nn + H(r)(I — nn)] : (A5)
respectively. It can be readily seen that that for small Pe the problem is singularly
perturbed, i.e. at distances r ~ Pe~"/? the convection is as important as diffusion in
(A 1). It has been demonstrated in Brady & Vicic (1995) that for moderate distances,
r < 0(Pe”'?), the solution of (A1)~(A3) can be written as a regular asymptotic
expansion in powers of Pe up to O(Pe*?),
p(r) = Pepi(r) + Pe’ py(r) + O(Pe?), (A6)
with p; and p, given by
p1=—hi(r)n-E-n, (A7)
pr=—[(r)n-E-n)>+hs(r)n-E-Rn+hy(r)n-E-E-n+ hs(r)E:E],  (A8)
where £ is the vorticity tensor of the bulk flow, and n = r/r. Making use of (A 4-A 5)

and substituting (A 7)—(A 8) into (A 1)—(A 3) results in a system of coupled ODEst
for h;,

Laohi(r) = —=W(r), (A9)
Lyhs(r) = [§W(r) — 14 B(r)] hi(r) + 3r [1 — A(r)] Ki(r), (A 10)
Laohs(r) = hy(r), (A11)
Loha(r) = 8 bt + 11 = B (), (A12)
Lohs(r) = —2 Hr(zr) ha(r). (A13)
The operator L, is defined by
1d d H(r)
Lo=54 {ﬁc(r)dr] —a(a+1) rzr .

and W(r) =3 [B(r) — A(r)] —rA’(r). All h; decay at large r while the inner boundary
conditions (A 2) at r = 2 become

G(r)hy(r) = —[1 — A(r)], (A14)
G(r)hy(r) = h[1 — A(r)], (A 15)
G(r)hi(r)=0, i=34,5, (A 16)

Here A(r), B(r), G(r) and H(r) are non-dimensional pair hydrodynamic functions
(Kim & Karrila 1991).

Without hydrodynamic interactions
In the absence of hydrodynamic interactions, (A 1)—(A 3) reduce to

2V’p=Pel-r-V,p, r>2, (A 17)
n-V,p=Pen-E-n(1+p) at r=2, (A 18)
p~0 as r — oo (A 19)

1 The original system of ODEs for h;—hs ((A3)—-(A7) in the Appendix of Brady & Vicic 1995)
contains a number of errors, and, therefore, we have chosen to re-calculate the functions h; here.
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Under these conditions, the functions %; in (A 7)—(A 8) can be found in closed form as
the solution of (A 9)-(A 16) with A(r)= B(r)=0 and G(r)= H(r)=1 (Brady & Vicic
1995):

16 1 2
hl(”)=?f3’ h1(2)=§,
2/1 16
hy(r) = 3 ( - 5> , hx(2) =0,
r r

8 /3 4 8
= (2-4). m() =5 (A20)

32/5 12 8
]’l4(l‘)——a (r’_r5> s h4(2)__@»

4 (105 200 144 128
I’lS(}") = —% <r - r73 + r5> s h5(2) - _%

One cannot calculate flow-induced deformation to the microstructure in (2.40) using
this regular expansion, because it results in conditionally convergent or divergent
integrals due to slow decay of i; (~r—3) and hy—hs (~r~'). Instead, one must construct
a uniformly valid asymptotic expansion of p, where the slowly decaying terms will be
matched to the solution in the ‘outer’ region, r ~ O(Pe~'/?). We introduce an outer
expansion Z(p)= ) H,(¢)?, where p=(X;, X, X3)=¢er =0(1) is the scaled outer
variable with & = Pe'/?. It follows from (A 1) that any term of the outer expansion
should satisfy

VP, =T+-p-V,?,, and 2,-0 as p—o. (A21)

Next we construct solutions 2, for simple shear flow, I"ij =41;8»; as a superposition
of solutions 7,5 corresponding to multipole sources (9/dx;)*(3/9x2)P8(r),

Pu=_ C'Tuslp). (A22)
o, =0
where the 7,4 can be obtained from the fundamental solution of (A 21) found by
Elrick (1962),

0 ds a\“/ @ N\
T = R T P —p7/16s & A23
p(P) /0 1+ 52/3)532 (ax1> <ax2 + saxl> ©e (A23)

s (X1 —3X3) + 6X1X>
48(1 4 52/3)

The expansion coefficients H,(¢) and C*® are determined by matching to the inner
solution (A 6)-(A8) as |p| — 0. Note that the solution to the full problem (A 1)—
(A 3) for an arbitrary Pe can be constructed numerically via (A 23) (with H,=1).
In this case, the coefficients C*¥ are to be determined by the boundary conditions
(A 2) directly, yielding an infinite linear system of equations for the coefficients C*#
(Blawzdziewicz & Szamel 1993).

The first approximation of the outer expansion £ should match the quadrupole
forcing p; (A7) re-written in the outer variables, i.e.

where

_L6 n-E-n
3 03

P(p) — Pe*? ( + O(p_1)> , (A24)
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where O(Pe*?p~!) terms are generated from r~! terms in the second-order

perturbation p, (A8) (hy, hs and hs). This matching condition leads to H;=¢&°.
The choice @ =p=1 with C}'=4/9,/n, C{¥ =0 for &, B+ 1 provides the required
solution satisfying (A 24) as p — 0,

4
P=——=T 1. A25
1 N (A25)
One can show (through some lengthy algebra) that the asymptotic form of 2, as
o — 0 is given by
X3—X? 2XiXx3 2
2 LT = 4o+ 0(p). (A 26)
o’ 30 9%
Rewritten in inner variables, 2; can be shown to match p; (A7) and the r~! terms
in p; (A8)

Pr~—

2
3 0 9

E-n)? E-O- . E
_g(nEn)+§nESZn+ﬂE.E 47 PP,
3 r 9 r 9 r

p~—Peh1(r)n-é-n+Pez<

(A 27)
IS arall 3\ 7
Matching the next two terms of the outer expansion with the = and r—> terms of
p> yields H,=¢7 and H;=¢’. Omitting the details of the matching procedure, these
terms are found as

J2_63\/E 9=/20+9=/02 , 93—315\/?/22- (A 28)
Note that, because h,—hs contain only terms with odd powers of 1/r, the outer
expansion involves only terms proportional to Pe® /2. Therefore, in the limit p — 0
the three-term expansion (A 25)—(A 28) matches the two-term inner expansion (A 6)
exactly, and it represents a uniformly valid solution of the full problem (A 1)-(A3)
up to O(Pe’?) for small Pe. Interestingly, in Blawzdziewicz & Szamel (1993) the
distortion of the pair-distribution function g(r) for an arbitrary Pe was determined
by solving for the coefficients of the multipole expansion C* numerically, with the
finding that for Pe <2 the truncation level | =« + <4 is sufficient. Our theory
provides the asymptotic form of these coefficients at small Pe, indicating that only
multipoles with even [ contribute, i.e. 7 11, 7 5, etc.

To obtain the non-equilibrium static structure factor (2.40) we perform a numerical
integration of the constructed solution in the whole space for r >2. In figure 8
the results of the numerical integration of the leading term Pe>?#2; are presented
(O symbols) on a log-linear plot. The inset shows the calculated values of Sy near
Pe =0. Although the angular integration over the quadrupole forcing term in the
inner expansion (A 7) yields zero, an O(Pe) contribution to S, could be anticipated
from the first unmatched constant term .«ZPe*? in (A27). An O(Pe®) contribution
to Sy is expected from r~! terms in (A 7), while the contribution of the outer region
is restricted to O (Pe*?). Thus, the best fit of the results of numerical integration of
Pe¥?2, to the polynomial form

gy 1 . 3
(So—S;")p™" ~ %(co Pe + ¢; Pe? + ¢, Pe?) (A 29)

gives ¢g=0.254, c; = — 3.77, and ¢, =1.54.
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FIGURE 8. Distortion of the steady static structure factor [So(Pe) — S;7]/¢ from its the
equilibrium form at zero wave-vector, k=0: O, spherical harmonic expansion; [, results

of the numerical integration of a one-term asymptotic expansion, Pe*/>2,; ———, the best fit
(A 29); », numerical results of Btawzdziewicz & Szamel (1993). The inset shows the calculated
asymptotic behaviour near Pe =0.

Further, since the angular integration over r—> and r > terms in p, (A 8) yields zero
as well, it is anticipated that the contribution from (A 28) is restricted to O(Pe’/?).
Although matching 2, results in a constant term %Pe’/? in the inner expansion,
suggesting that there should be an O(Pe?) contribution to So, the integral of Pe”?2,
scales as Pe’’?, having already started at Pe ~0.01 (not shown), suggesting that this
contribution is very small. Thus, one can compute S, in the first approximation up
to O(Pe>’?) from Pe”?2, (A 25) alone. The asymptotic result (A 29) (dashed line in
figure 8) is in very good agreement with numerical calculations of Blawzdziewicz &
Szamel (1993). We calculate the distortion [Sy — S;?]/¢ using a different approach
developed by Vicic (1999), where p(r) is expanded in spherical harmonics as

L m=l
p(r,Pe) =" """ Bu(r, Pe)Y"(6, ¢),

=0 m=—

(A 30)

and the radial functions Bj, are determined numerically from the infinite set of
coupled ODEs (Vicic 1999). From orthogonality of the surface spherical harmonics
Y" it follows that only the first term in the expansion contributes, and the distortion
of the static structure from equilibrium is determined as
3 o0
¢ 'ASy = ——= / Boo(r, Pe) r*dr. (A31)
2\/775 r=2

The results of the numerical integration in (A 31) with L <16 for small Pe are
presented in figure § (o symbols). Agreement between the full numerical solution and
the asymptotic result (A 29) is excellent up to Pe ~0.6. The close agreement between

the numerical results of Blawzdziewicz & Szamel (1993) and the asymptotic solution
up to Pe ~ 1 shows that the truncation level L =2 in multipole expansion is sufficient.
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FIGURE 9. Distortion ¢! ASy vs. Pe calculated using expansion (A 31) for different truncation
levels L. The dashed line corresponds to an anticipated high-Pe asymptote ~ Pe'/?,

The distortion of the static structure factor for moderate Pe, calculated from (A 31)
upon increasing the truncation level to L =24 is depicted in figure 9 together with
the anticipated high-Pe asymptote, —p~'AS, ~ Pe'/? (dashed line).

Pairwise hydrodynamic interactions

When pairwise hydrodynamic interactions between particles are included, the
equations governing the perturbation functions #; (A9)-(A13) must be solved
numerically. The inner boundary conditions in this case are the same for all #;:

G(r)hi(r)=0 at r=2.

The solution for p; was first found in Batchelor (1977), and h,—hs have been
determined numerically in Brady & Vicic (1995). We recalculate 4; using a ‘shooting’
method: near-field asymptotic results are exploited to integrate outward where the
solutions are matched to the far-field asymptotic expansion at some large L. More
precise pairwise hydrodynamic functions are used here than in prior work, resulting
in a more accurate numerical solution for #;. The matched far-field solutions to h;—hs
are given by

o1 30[1 —25

hy~— + L2 ) = 8.904, (A32)
r3 }"4
33a; — 200 oy (5r* — 16)
hy ~ A33
? 962 T 408 (A 33)
(03] 40[1 —25 o3
3oy — 25
ha “21 o Xy =3.703, (A 35)

hs ~ — — 35 a5 =0.736. (A 36)
r
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FiGure 10. Functions h{—hs for pairwise hydrodynamic interactions vs. the separation
distance r; ———, asymptotic solutions (A 32)—(A 36);

Fortunately, the far-field asymptotic solutions converge to h; at r ~4, and moderate
L ~10 can thus be used for matching. The calculated functions 4; (solid curves)
together with their far-field asymptotic solutions (A 32)—(A 36) (dashed curves) are
plotted in figure 10.

Concerning the microstructural deformation, ASy, we face the same problem as
when hydrodynamic interactions were neglected, i.e. the ‘inner’ solution does not
allow integration of p(r) due to the slow decay of h; at large r. The construction
of the uniformly valid solution is more difficult with hydrodynamic interactions, and
only the leading term of the outer expansion can be derived in a simple fashion.
The first approximation to the solution for the pair-distribution function p; far from
contact is again the quadrupole term (up to a multiplicative constant), as without
interactions, (A 7), i.e.

Pl(")=—q(l’)n'l§"n~—a—31n-l§-n+0(r_4) as r — oo. (A 37)
r

At distances r ~ O(Pe~'/?), the relative diffusivity D, ~2I 4+ O(r~') and the relative
velocity U ~T-r+ O(r~%) and, thus, the pair-distribution function, to the first
approximation, is governed by the same equation as without hydrodynamics (A 21),
P ~e’P;, where 2, has the same form as (A 25) (up to a multiplicative constant),

P =—2_ 7. (A 38)

It is readily seen that (A 38) when rewritten in inner spatial variables in the limit
of p— 0 matches the O(r—*) quadrupole term of 4; (A 32) and the O(r~') terms in
the far-field inner expansion of h,, h; and hs (A 33)—(A36) in the same way as in
(A 26)—(A 27). Unfortunately, the one-term outer expansion is not a complete solution
to the problem at O(Pe), as was the case without hydrodynamic interactions: it does
not match p; exactly. The unmatched O(r~*) terms in p; may contribute to AS, at
O(Pe) and, therefore, we do not expect to arrive at the asymptotically correct result
by integrating the one-term outer expansion, £°2;. The derivation of the next term
in the outer expansion, £°2,, matching the O (r—*) term of the far-field inner solution
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FIGURE 11. Microstructural deformation, ¢ ~'ASy, calculated for pairwise hydrodynamics as
a function of the Péclet number upon varying the truncation level L. The inset shows the
large-Pe numerical results obtained via the finite-difference scheme of Bergenholtz et al. (2002).

for p; (A 32), requires the solution of
2 : _3 pp Yy
2Vpg2—r'p'vp,@2—§p l+? -vapyh (A39)

where the non-homogeneous term on the right-hand side arises due to the V - D, is
O(r=>) and 2, is given by O(r~!) spatial dependence of D, after noting that (A 38).
The solution of (A39) is a fairly complicated task and, therefore, we adopt
the numerical approach of Brady & Vicic (1995) and compute the distortion of
the microstructure using the spherical harmonic expansion (A 30), followed by the
numerical integration according to (A 31). The results for ¢ ' AS, vs. Pe are presented
in figure 11 upon varying the truncation level L. The convergence of the results with
respect to L is slow, possibly due to slow decay of D, ~O(r~!) in (A 9), and already
more than 30 harmonics are required in (A 30) for accurate computation of the
microstructural deformation at Pe ~ 1, when hydrodynamic interactions are taken
into consideration. Therefore, the method of Bergenholtz, Brady & Vicic (2002)
based on a finite difference scheme, was found to be more useful for numerically
evaluating the microstructural deformation in the long-wavelength limit for large
Pe. The corresponding results are depicted in the inset in figure 11. It is readily
seen, that when hydrodynamic interactions are included, ¢ 'AS is positive up to
Pe~ 1.5, in contrast to the case when hydrodynamic interactions are neglected
(see figure 8). At large Pe the flow-induced microstructural deformation ¢—'AS,
is negative and diminishes with the rate ~ log Pe vs. the \/ﬁ-dependence found
when hydrodynamics are neglected (see figure 9). The viscous forces act to narrow
the wakes of depleted g(r) and result in a more efficient angular diffusion. Thus,
intuitively, smaller microstructural deformations are expected for hydrodynamically
interacting particles than for the case without hydrodynamic interaction at high Pe.
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